A Dyck path with air pockets is a non-empty lattice path in the first quadrant of \mathbb{Z}^2 starting at the origin, ending on the x-axis, and consisting of up-steps $U = (1, 1)$ and down-steps $D_k = (1, -k)$, $k \geq 1$, where two down steps cannot be consecutive (we set $D_0 = 0$, for short). The set of such paths is denoted by A.

Let A_n denote the set of n-length Dyck paths with air pockets.

Example:

![Figure: A Dyck path with air pockets](image)

Cardinality formula (OEIS A004148):

$$|A_n| = \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{1}{k} \binom{n-k}{k} \binom{k}{n-1-k}.$$

Generating function:

$$\sum_{n=2}^\infty |A_n| \cdot x^n = \frac{1-x-x^2-\sqrt{1-2x+2x^2-2x^3+2x^4}}{2x}.$$

A Dyck path with air pockets is prime if it ends with D_k, $k \geq 2$, and it returns to the x-axis only once. The set of such paths is denoted by F.

Lowered and elevated paths

We introduce two transformations of Dyck paths with air pockets. If α is a Dyck path with air pockets of the form U^sD_t (where s is either empty or in A), then we define the lowered version of α as $\alpha^\flat = U^s\beta D_t$. We also define the inverse operation $\hat{\flat}$, and call α^\flat the lowered version of α.

Example:

![Figure: Lowered and elevated paths](image)

The operations \flat and $\hat{\flat}$ will help us to define a bijection between A_n and a class of well-known lattice paths.

Bijection with peakless Motzkin paths, M_n

A peakless Motzkin path is a non-empty lattice path in the first quadrant of \mathbb{Z}^2 starting at the origin, ending on the x-axis, consisting of up-steps $U = (1, 1)$, down-steps $D = (1, -1)$, and flat-steps $F = (1, 0)$, having no occurrence of UD. The set of such paths is denoted by M. The set of n-length peakless Motzkin paths is denoted by M_n.

$$A \overset{\psi}{\longrightarrow} M$$

Theorem: The map ψ induces a bijection between A_n and M_{n+1}.

Pattern popularity in A_n (2 ≤ n ≤ 11) can be found in the following table:

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Pattern popularity in A_n</th>
<th>OEIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>1, 2, 5, 13, 32, 80, 204, 565, 1273, 3217</td>
<td>A193320</td>
</tr>
<tr>
<td>D</td>
<td>1, 0, 2, 3, 7, 17, 40, 97, 238, 587</td>
<td>A051291</td>
</tr>
<tr>
<td>Δ_k</td>
<td>0, 1, 3, 6, 13, 30, 70, 167, 405</td>
<td>A201631(= u_n)</td>
</tr>
<tr>
<td>Δ_{k+}</td>
<td>1, 0, 2, 3, 7, 17, 40, 97, 238, 587</td>
<td>A051291</td>
</tr>
<tr>
<td>Δ_{k-1}</td>
<td>1, 1, 2, 5, 10, 24, 47, 137, 335, 825, 2025</td>
<td>A051291</td>
</tr>
<tr>
<td>Δ_{k+1}</td>
<td>1, 1, 3, 5, 12, 27, 64, 154, 375, 922, etc.</td>
<td></td>
</tr>
</tbody>
</table>